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Tracer Diffusion in Lattice Gases 
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It has been proved that a tracer particle in a reversible lattice gas converges to 
Brownian motion. However, only in a few particular cases has a strictly positive 
self-diffusion coefficient D been established. Here we supply the missing piece 
and show that D > 0  in general. The exceptions are one-dimensional lattice 
gases with nearest neighbor jumps only, for which D = 0. The proof establishes 
a variational formula for D which could be used to obtain realistic bounds. 
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1. I N T R O D U C T I O N  

Tracer diffusion is a standard problem of nonequilibrium statistical 
mechanics: one considers a large system of interacting particles in thermal 
equilibrium (=fluid) and adds one extra particle (=tracer  particle, test 
particle, tagged particle). The tracer particle is distinguished through some 
internal property, e.g., color, from the fluid particles. Let x te  Nd be the 
position of the tracer particle at time t. One expects that on a large 
space-time scale, x, behaves as Brownian motion. The immediate and best 
known example is pollen immersed in water. (At that time the experimental 
observation of Brownian motion was striking evidence for the atomistic 
structure of matter. (1)) The phenomenon of Brownian motion is of a more 
general nature, however. In particular, the tracer particle does not have to 
be heavy in comparison to the fluid particles. 

We investigate here tracer diffusion in the context of stochastic lattice 
gases (see ref. 2 for a review). When going to a larger scale, length and time 
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must be related through (length)2,~time as appropriate for Brownian 
motion. Therefore, the rescaled position of the tracer particle is defined as 

x~=ex~-2t (1.1) 

e small. It has been proved, (3'4) under fairly mild conditions, that 

lim x~ = (2D) 1/2 b(t) (1.2) 

Here D is the self-diffusion coefficient (better, self-diffusion matrix) defined 
through 

( ( l .  x,) 2 ) = 2(l. Dl)t (1.3) 

for large t with l a constant vector and l.x=Za~=l l~x~. b(t) is standard 
Brownian motion in d dimensions. This is the Gaussian process with mean 
zero and covariance 

F_(b~(t) b~(s)) = 3~  min(t, s) (1.4) 

e, /3 = 1 ..... d. In contrast, for mechanical systems governed by Newton's 
equations of motion, the convergence to Brownian motion has been 
established only in a few very special cases. 

We consider lattice gases with the constraint of single site occupancy. 
For such systems the tracer particle may be blocked by a surrounding large 
cluster of lattice gas particles. The tracer particle may have to wait then, 
possibly a long time, until the cluster has changed to the point where 
nearby sites open up. In fact, in one dimension with nearest neighbor 
jumps only, blocking is so severe that D = 0 .  (5) The leading long-time 
behavior is not Brownian motion, but subdiffusive. In more than one 
dimension blocking should not have such a drastic effect. Our aim is to 
prove that, with the exception already noted, indeed D > 0 always. 

Such a result has been established in the case of infinite temperature 
(the reversible stationary measures are Bernoulli). (3) A simple lower bound 
for D is obtained by freezing all lattice gas particles. This attempt fails at 
densities above the percolation threshold. The lower bound vanishes then 
because the tracer particle is confined to a finite number of sites. 

To give a short outline: In Section 2 we define the stochastic lattice gas 
and the tracer particle motion. In Section 3 we establish a variational 
formula for the self-diffusion coefficient. This formula is novel, to our 
knowledge, and was inspired by the corresponding one for bulk diffusion 
which I learned from S. R. S. Varadhan. The variational formula is used to 
obtain a lower bound on the self-diffusion coefficient. The basic idea is sim- 
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ple. First we constrain the tracer particle motion to one lattice axis. To 
avoid blocking, a lattice gas particle adjacent to the tracer particle along 
the specified axis may jump across the tracer particle. All other lattice gas 
particles are frozen. We allow just enough motion of the lattice gas to 
avoid blocking and so little that a positive self-diffusion coefficient can be 
shown by elementary means. 

2. C O N V E R G E N C E  TO B R O W N I A N  M O T I O N  

We consider a standard reversible lattice gas on zd. (6/The state space 
is X =  {0, 1 } ze. A configuration of particles is denoted by ( e  X. Here ((x), 
x e Z ~, is the occupation variable at site x: ((x) = 1 if the site x is occupied 
and ((x) = 0 if site x is vacant. (xy denotes the configuration with occupan- 
cies at x and y interchanged, 

( ( ( y )  if u = x  

~XY(u) = J~(x) if u = y 

~((u) if u ~ x , y  

(2.1) 

Let c(x, y, () be the exchange rate (jump rate) between x and y. It has to 
satisfy: 

(i) 
(ii) 

c(x, y, ~) = c(y, x, ()  >. o. 

(translation invariance) 

c(x + a, y + a, za~)=c(x, y, () 

where ra is the shift by a E 77 d. 

(iii) (finite range). There exists a constant R such that 

c(x, y, ~)= o 

if I x - y l  > R  and such that c(x, y, () depends only on the ((u)'s with 
l u -  yl <~ R, l u -  xl ~ R. 

(iv) (nondegeneracy) 

for Ix -y[  = 1 and ( (x )~( (y) .  

C(X, y , ( )>O 

To impose reversibility, we first need an interaction energy, which is 
constructed from a set of potentials {JAIA finite subset of Za}. The poten- 
tial is translation invariant, JA +a = Ja,  and of finite range, i.e., Ja  = 0, 



1230 Spohn 

whenever the distance between two points in A exceeds R. The energy H A 

in the bounded subset A is given by 

HA(If)= 2 J A ( I ~ ( X ) )  (2.2) 
A c A  \ x e A  / 

Note that, because of the finite range, energy differences are defined even 
in infinite volume, 

H((Xy) - H(() = lim [HA((xy) -- HA(()] (2.3) 
AT Zd 

Reversibility is imposed through the following condition. 

(v) (detailed balance) 

c(x, y, ~)-= c(x, y, (xY) e x p { -  [H(~XY)-- H(()]  } (2.4) 

The generator of the lattice gas dynamics is 

Lof(( ) = ~ ~ c(x, y, ~)[ f ( (xY)- f (~) ]  (2.5) 
X, y 

acting on local functions f .  The semigroup generated by Lo is Feller and 
the stochastic jump process ~t is constructed in the standard fashion. (6) 

Any Gibbs measure # for the potential (JA) is stationary for (t. (v). We 
require here the following condition. 

(vi) # is extreme translation invariant. 

Actually, it suffices that # is extreme invariant under a lattice sub- 
group of all translations. 

The initial measure for (, is the Gibbs measure # conditioned that 
((0) = 1. [Under our assumptions #(((0))> 0.] The particle initially at the 
origin is our tracer particle. Its position at time t is denoted by x t. 

It turns out to be convenient to adopt a moving frame of reference by 
choosing the position of the tracer particle as the origin. Then the con- 
figuration as seen from the tracer particle is 

r/t(x) = ff~(x + x~) (2.6) 

By definition, 

qt(0) = 1 (2.7) 

for all t/> 0. Therefore the q-configuration space is 

Xo= {~1~(o)= 1} 
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The generator of the lattice gas dynamics as seen from the tracer particle 
has two parts, LI and L2. The part L1 describes the shifting of the whole 
configuration due to jumps of the tracer particle, 

L ~ f ( 7 ) =  ~ c(0, x, 7 ) [1 - r / (x ) ] [ f ( ' c  x7~  (2.8) 
x, x4-O 

for local functions f on Xo. The part L2 describes the jumping of particles 
with the origin forbidden, since occupied, 

1 
L2f(r/) = ~ • c(x, y, 7 ) [ f ( t / x ' ) - f ( 7 ) ]  (2.9) 

x , y , x ~ O C  y 

for local functions f on X o. The generator of the full dynamics is then 

L=L~ +L2 (2.10) 

Let ~o be the Gibbs measure ~t conditioned on 7(0)= 1. Then #o is 
reversible under both L~ and L2. 

So far the tracer particle has been dynamically identical to all other 
particles, in the sense that its jumps are governed by the same jump rates. 
This does not need to be the case. If not, we redefine L1 as 

L ~ f ( q ) =  ~ g(O,x ,q)[1-q(x)][ f ( r_x~~ (2.11) 
x , x  :/- 0 

The jump rates g(0, x, 7) have to satisfy ~(0, x, 7)~>0 and conditions (iii) 
and (iv). Furthermore, #o has to be reversible for L1. This is ensured by the 
following condition. 

(v') (detailed balance) 

g(0, x, r/)(1 - q(x)) = a(O, - x ,  r ~r/~ - ~ ~r/~ 

x exp { - [H(r/~ - H(r/)] } (2.12) 

r/, is the stationary process governed by L = L~ + L 2 with #o as initial 
measure. Clearly, given 7,, for 0 ~< t'~< t we can reconstruct the position x, 
of the tracer particle. 

Next we want to determine the self-diffusion coefficient D. For this we 
consider the joint process (x,, 7~) with generator Zg. N o w ,  )c o = 0 and t/o is 
distributed according to #o. Let f ix ,  7)= l.)c with l some real vector. Then 

Lgf(X, 7) = j,(r/) (2.13) 
with 

j , ( t / )=  ~, g(O,x,q)[1--q()c)](l.x ) (2.14) 
x , x ~ - O  
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By standard Markov theory we have the martingale 

M , = l . x , -  dsjt(tl=) (2.15) 

Its quadratic variation is 

IZ(M2)=t ~ ( l 'x )  2 ( ? ( 0 , x , t / ) [ l - t / ( x ) ] ) o  
x ,  x v ~ O  

(I, ,]) = Y_ l . x , ) -  dsjt(rl= (2.16) 

Here ( . ) 0  is expectation with respect to ~0. Working out the square, the 
cross term vanishes because x, is odd and 5~ dsjl(tl=) is even under time 
reversal. Thus, 

1 
7 ~:((I. x,) 2) = ( / .x)  2 (8(0, x, r/)[1 - r/(x)-])o 

x ,  x v ~ O  

- -  ds ds' ( j l e  LI=-='IJ" l )o 
0 

(2.17) 

r/t is a reversible process. Therefore, by the spectral theorem the limit t --* oo 
in (2.17) exists and defines the self-diffusion matrix 

1 6 D=a = ~ =~ ~x x~<?(0, x, r/)[1 - r/(x)] )o 

- f o  dt <j~eLT~)o (2.18) 

Here j= = j== with e= the unit vector in the positive ~ direction. D ~> 0 as a 
d x  d matrix. In principle, both terms in (2.18) could cancel each other. 

T h e o r e m  1,  (3'4) Let the above assumptions hold and let D be 
defined by (2.18). Then 

lim axe-2 t = (2D) m b(t) (2.19) 
c ~ 0  

b(t) is d-dimensional standard Brownian motion. The convergence is in the 
sense of weak convergence of path measures on D([0, oo), Ea). 

Before closing this section, we briefly comment on the velocity 
autocorrelation function of the tracer particle. We define the velocity of the 
tracer particle by 

d 
vt = -fit xt (2.20) 
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in the distributional sense, v, is a stationary stochastic process. Comparing 
with (2.17), its autocorrelation is given by 

F(/) t �9 DO) = O(t)  2 X2<c(O'  X, ~)F1 - -  ? ] (x ) l  >0 
x 

d 
- ~ (j~eLl'~/'~> o (2.21) 

c~=l 

The velocity autocorrelation has a 6 peak at t = 0  and is otherwise 
negative. It increases monotonically (t >/0) and is integrable. The velocity 
autocorrelation function has a universal feature known as a long-time 
tail. (s'9) This refers to its asymptotic decay, which is expected to be of the 
form 

~(v,. Vo) ~ - t -  E(a/2)+ 11 (2.22) 

for large t. Of course, the prefactor of the long-time tail will depend on the 
particular jump rates. 

For symmetric exclusion in one dimension with nearest neighbor 
jumps Arratia (5) proves that E(x,Z),,~ x/~ for large t and that t - l / 4 x  t has a 
Gaussian distribution asymptotically. Transferring the first result to the 
velocity autocorrelation gives a - t  -3/2 decay in accordance with the 
theoretical prediction. In fact, this is one of the few cases for which a 
long-time tail in the velocity autocorrelation has been proved. (9'~~ 

3. A V A R I A T I O N A L  F O R M U L A  

Since r/, is a reversible process, the self-diffusion coefficient can also be 
expressed in variational form. 

Propos i t i on  2. Let D be given by (2.18). Then 

1 ~ r Ox (l .Dl)=~inf~ ~ (?(O,x, rl)[1-tl(x)][l .x+ f(  -xq ) - f ( t / ) ] 2 ) o  
x , x ~ O  

1 
+ ~ ~ (c(x, y, tl)[f(~lxY)-f(tl)]2)o ~ (3.1) 

x , y , x r 1 6 2  y J 

The infimum is over all real-valued local functions f on Xo. 

ProoL Since S~ at (jleL~/l)o < ~ ,  we have (-L)I/2jteL2(Xo, #o). 
Therefore 

2(j ,L lj,)o = inf ( - 4 ( j , f ) o  - 2( fLf)o)  (3.2) 
f 
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The Dirichlet forms are 

-2( fL l f )o- - -  ~ (g(O, x, q)[1 -7(x)][f(Z_xT~ (3.3) 
x , x r  

1 
- 2 ( f L 2 f ) o  = ~ ~ (c(x, y, 7)[f(7 ~y) - f ( 7 ) ] 2 ) o  (3.4) 

x, y , x  ~Ov~ y 

Using the detailed balance (2.12), we have 

- 4 ( j t f ) o  = - 4  ~ (l.x)(g(O,x, 7 ) [ - 1 - 7 ( x ) ]  f ( 7 ) ) o  
x, xv~O 

= 2  ~ (l.x)(g(O,x, 7)[1-q(x)][f(z xT~ 
x , x ~ O  

(3.5) 

Inserting (3.5), (3.3), and (3.4) in (3.2) and adding the first term of (2.18) 
results in (3.1). | 

As an immediate consequence of the variational formula, we note that 
D is increasing (as a matrix) in c and g. 

4. A LOWER B O U N D  

We prove that (2.19) is indeed the true long-time behavior. 

T h e o r e m  3. Let the above assumptions hold and let D be given by 
(2.18). 

(i) If d =  1 and 

c(x, x + 2 ,  7 ) > 0  (4.1) 

for 7 ( x ) r  2), then D > 0 .  

(ii) I f d > l ,  t h e n D > 0 a s a m a t r i x .  

We want to reduce the lower bound in higher dimensions to a lower 
bound in one dimension. We single out the 1 axis and set e = (1, 0 ..... 0). Of 
course, the final result will be independent of this choice. The jumps of the 
tracer particle will be restricted to the 1 axis. Lattice gas particles away 
from the tracer particle will be frozen. We first establish a lower bound to 
the Dirichlet form (3.4) consisting of jumps between - e  and e. 

L e m m a  4. Let d~>2. We label the sites of a path with nearest 
neighbor bonds from e to - e  by x = 1, 2 ..... 5. Let 

Lxx+ l f ( 7 )  = c(x ,  x + 1, 7 ) [ f (7  xx+ 1) -- f ( 7 ) ]  (4.2) 

L15f(7) = g(1, 5, 7 ) [ f (7  '5) - f ( t / ) ]  (4.3) 
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There exists a choice of the reversible exchange rate g(1, 5, q) such that 
g(1, 5, ~/)>0 for r/(1) r ~/(5) and such that 

4 
- ( f L ~ s f ) o < ~ -  ~ ( f L x x + l f ) o  (4.4) 

x=l  

for all local functions f. 

ProoL Let T~f(q)=f(~fJ),  i, j =  1,..., 5. Then 

T15 = T12 T23 T34 T45 T34 T23 T12 ~ TT12 (4.5) 

By telescoping, 

T15f - f = T(T~2f - f )  + ... + (T~2f - f )  (4.6) 

and by the Schwarz inequality, 

1 ( T 1 5 f - f ) 2  <<, T ( T l z f - - f )  2 + ... + ( T ~ 2 f - f )  2 (4.7) 

Now, with c a suitable positive constant, 

c T (T l2 f  - f )2<~ T [ e x p ( T H - H )  c(1, 2 ) ( T ~ 2 f - f )  2] (4.8) 

because c(1, 2, ~/)> 0 for ~/(1)~ ~/(2). Therefore we can choose a positive 
exchange rate g(1, 5) such that 

2g(1, 5)(T~sf  - f )2  <<, T [ e x p ( T H - H )  c(1, 2)(T12f - f )  2] + ... 

+ c(1, 2 ) ( T 1 2 f - f )  ~ (4.9) 

We average in (4.9) over ( . ) o  and use that the dual of T o. is given by 

( gTo. f ) o = (exp[  - ( T o l l -  H)]( Tu g) f )o (4.10) 

The result is (4.4). II 

We ignore terms in the variational formula (3.1) and use Lemma4. 
Then 

112(l . Dl) >~ inf x=~§ e (?(0, x, ~/)[1 - ~/(x)] 

• [(e. x) +f(~_x~ ~ -f(~)12)o 

+ (e(-e, e, ~)[f(~ ee)__f(~)]2)O } 

= / )  (4.11) 

822/59/5-6-t0 
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/5 is again the diffusion coefficient of a tracer particle. We describe its 
motion in the lattice fixed frame: Let ~ be the lattice gas configuration and 
y, be the position of the tracer particle at time t. The position y, is included 
in the lattice gas configuration; hence ~,(yt) = 1. Initially, y~ = 0 and ~ = ~o 
is distributed according to the conditional Gibbs measure #0. Y, jumps by 
+_e. If ~ ( - e ) =  i =~(e), then y~--0. We disregard this case and assume 
~ ( - e )  ~(e)= 0, which has a nonzero probability for ft o. If the site Yt + e is 
vacant, then y~ jumps there with rate ~(0, e, r_y,~t), and correspondingly 
for - e .  The tracer particle does not jump to occupied sites. A lattice gas 
particle can move only if it is adjacent, with _+e, to the tracer particle. 
Otherwise the configuration remains frozen. If ~(y ,  + e ) - - 1  and, 
consequently, ~ ( y t - e ) = 0 ,  then with rate ~( -e ,  e, T y ~ )  the configura- 
tion ~, changes to (, where ( ( x ) = ~ ( x )  for xCyt+_e and ( ( y , + e ) = 0 ,  
( ( y ~ - e )  = 1; and correspondingly for - e .  

I . emma  5. Let y, be the position of the tracer particle as defined 
above. There exists a strictly positive constant c such that 

E(y 2) >~ ct (4.12) 

Proof. The simple observation is that ~t (including the position of 
the tracer particle) can be thought of as a Markov chain with state space 
7/and nearest neighbor jumps only. A positive diffusion coefficient is easily 
established for it. 

Let us denote the initial configuration by ~o. By assumption, 
~~  ~~ and ~~ 1. The configurations which can be reached 
from ~o are labeled as ~ ,  n E 77, and are defined iteratively by the following 
rule: Let y be the position of the tracer particle in the configuration ~n. If 
~ n ( y + e ) = 0 ,  then ~+l=(~n)yy+e,  and if ~n(y -- e) = 0, then ~ , - 1 =  
(~,)y-ey. If ~"(y + e ) =  1 and therefore by construction .~n(y_ e )=0 ,  then 
~n+l= (~,)y-e~+e. Correspondingly, if ~ " ( y - e ) =  1, and therefore 
~ ( y + e ) = 0 ,  then ~" l=(~,)y-ey+~.  Let n(t) be the jump process with 
generator 

Gf(n)=)~+(n)[f(n+l)- f(n)]+2 (n ) [ f (n -1 ) - f ( n ) ]  (4.13) 

We can choose the jump rates 2+(n), 2 (n) such that 

(4.14) 

By construction, there exist constants c+, c independent of ~o such that 

0 < c  ~<,i+(n), 2 (n)~<c+<oo (4.15) 
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and the rates satisfy detailed balance in the form 

2+(n)=2_(n+ 1) exp{ - [H(~n+ 1) - H((n)] } (4.16) 

The energy differences arc bounded from below and above independent of 
(o. Most importantly, we have 

4y2)n  2 (4.17) 

because y moves by one unit at least every second step. 
We construct a harmonic function, Gf= O, which is essentially linear. 

Using detailed balance, we obtain 

{ ~ 1 2 @ ) e x p [ H ( ( Z ) - H ( ( ~  for n~>l 
~ = ~  

f ( n ) =  for n=O (4.18) 

o 1 
- ~ -~--77~exp[H((Z)-H((~ for n ~ < - i  

z = n + l  "~--tZl 

Furthermore, 

Gf2(n)= [).+(n) ~+2_(n)  -1] exp{Z[H( ( " ) -H( (~  (4.19) 

Therefore, we can choose constants cl and c2 independent of (0 such that 

d 
dt E(f(n(t))2) >~ el (4.20) 

f(n) 2 <<. c2 n2 (4.21) 

Together with (4.17), this implies 

E(y~)>~�88 | (4.22) 

Proof of Thoorom 3. Part (i) follows from Lemma 5. For part (ii), 
Lemmas 4 and 5 together establish 

(l. Dl) > cl~ (4.23) 

with c some positive constant. Repeating the same argument for the other 
coordinate axis yields (l. Dl)>>. gl~ with g > 0 and e = 1,..., d. This proves 
our assertion. | 

We supplement Theorem 3 by the following result. 
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Propos i t ion  6. 

for Ixl ~ 2. Then D = 0. 

Proof. We use 

Let d= 1 and let 

c(0, x, ~/) = 0 = a(0, x, ~/) 

Spohn 

(4.24) 

f (q)  = ~ h(ex) q(x) (4.25) 
x 

as variational function in (3.1). h is a function of compact support on R, 
which is smooth except at zero, where p(h(O+)-h(O ) )=  - 1  with p the 
average density for/l.  Then 

D~< ~ {a (O,e ) [1 - t / ( e l ]  
e = + l  

x e+ ~, [ h ( e x - e e ) - h ( e x ) ] t l ( x )  
x, xV=O,e 0 

4- ~ (c(x, x4-1, t l ) [ q ( x ) - t l ( x + l ) ]  2 
x,x~ --1,0 

x [h(sx) - h(ax + ~)] z }o (4.26) 

For small e, the second term is of order e. The first term becomes 

/ [ 1) ~+ ~(0, e ) [1 - r / ( e ) ]  1 - ~  ~ h'(ex) tl(x) (4.27) 
e= _1 x~O,e 0 

We use the ergodic theorem and the exponentially fast approach to the 
average density as [x[-* oo to conclude that this term also vanishes as 
e~O.  I 
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